resize的时候报错:InvalidArgumentError

来源:5-8 图像增强api使用

卷积包心菜

2021-03-05

name = './gugong.jpg'
img_string = tf.read_file(name)
img_decoded = tf.image.decode_image(img_string)
img_decoded = tf.reshape(img_decoded, [1, 365, 600, 3])

resize_img = tf.image.resize_bicubic(img_decoded, [730, 1200])
print('resize_img shape: ', resize_img.shape)
sess = tf.Session()
img_decoded_val = sess.run(resize_img)
img_decoded_val = img_decoded_val.reshape((730, 1200, 3))
img_decoded_val = np.asarray(img_decoded_val, np.uint8)
print(img_decoded_val.shape)

%matplotlib inline
imshow(img_decoded_val)

报错如下:

InvalidArgumentError                      Traceback (most recent call last)
<ipython-input-11-dc13c12d0cb2> in <module>()
     12 print('resize_img shape: ', resize_img.shape)
     13 sess = tf.Session()
---> 14 img_decoded_val = sess.run(resize_img)
     15 img_decoded_val = img_decoded_val.reshape((730, 1200, 3))
     16 img_decoded_val = np.asarray(img_decoded_val, np.uint8)
     ...
InvalidArgumentError: Input to reshape is a tensor with 2128680 values, but the requested shape has 657000
	 [[node Reshape_7 (defined at <ipython-input-11-dc13c12d0cb2>:9) ]]

跟你的代码一样,为啥会报这个错

写回答

1回答

正十七

2021-03-22

错误发生在reshape这一行,可能是因为输入的图片大小不一样了,不是600 x 365的,你再check一下输入的图片大小?

0
0

深度学习之神经网络(CNN/RNN/GAN)算法原理+实战

深度学习算法工程师必学,深入理解深度学习核心算法CNN RNN GAN

2617 学习 · 935 问题

查看课程