报错信息 net.jpountz.lz4.LZ4BlockInputStream.<init>(Ljava/io/InputStream;Z)V

来源:1-25 -Hive基本使用

慕运维7479159

2018-05-24

processWithDesign.show(1000, false) 运行这一段 dataframe.show就报错

老师以下报错什么问题

18/05/24 14:00:43 ERROR Executor: Exception in task 0.0 in stage 2.0 (TID 2)

java.lang.NoSuchMethodError: net.jpountz.lz4.LZ4BlockInputStream.<init>(Ljava/io/InputStream;Z)V

at org.apache.spark.io.LZ4CompressionCodec.compressedInputStream(CompressionCodec.scala:122)

at org.apache.spark.serializer.SerializerManager.wrapForCompression(SerializerManager.scala:163)

at org.apache.spark.serializer.SerializerManager.wrapStream(SerializerManager.scala:124)

at org.apache.spark.shuffle.BlockStoreShuffleReader$$anonfun$2.apply(BlockStoreShuffleReader.scala:50)

at org.apache.spark.shuffle.BlockStoreShuffleReader$$anonfun$2.apply(BlockStoreShuffleReader.scala:50)

at org.apache.spark.storage.ShuffleBlockFetcherIterator.next(ShuffleBlockFetcherIterator.scala:417)

at org.apache.spark.storage.ShuffleBlockFetcherIterator.next(ShuffleBlockFetcherIterator.scala:61)

at scala.collection.Iterator$$anon$12.nextCur(Iterator.scala:434)

at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:440)

at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)

at org.apache.spark.util.CompletionIterator.hasNext(CompletionIterator.scala:32)

at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)

at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)

at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage4.sort_addToSorter$(Unknown Source)

at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage4.processNext(Unknown Source)

at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)

at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$10$$anon$1.hasNext(WholeStageCodegenExec.scala:614)

at org.apache.spark.sql.execution.RowIteratorFromScala.advanceNext(RowIterator.scala:83)

at org.apache.spark.sql.execution.joins.SortMergeJoinScanner.advancedBufferedToRowWithNullFreeJoinKey(SortMergeJoinExec.scala:810)

at org.apache.spark.sql.execution.joins.SortMergeJoinScanner.<init>(SortMergeJoinExec.scala:685)

at org.apache.spark.sql.execution.joins.SortMergeJoinExec$$anonfun$doExecute$1.apply(SortMergeJoinExec.scala:213)

at org.apache.spark.sql.execution.joins.SortMergeJoinExec$$anonfun$doExecute$1.apply(SortMergeJoinExec.scala:150)

at org.apache.spark.rdd.ZippedPartitionsRDD2.compute(ZippedPartitionsRDD.scala:89)

at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)

at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)

at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)

at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)

at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)

at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)

at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)

at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)

at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)

at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)

at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)

at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)

at org.apache.spark.scheduler.Task.run(Task.scala:109)

at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:345)

at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)

at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)

at java.lang.Thread.run(Thread.java:748)

18/05/24 14:00:43 WARN TaskSetManager: Lost task 0.0 in stage 2.0 (TID 2, localhost, executor driver): java.lang.NoSuchMethodError: net.jpountz.lz4.LZ4BlockInputStream.<init>(Ljava/io/InputStream;Z)V

at org.apache.spark.io.LZ4CompressionCodec.compressedInputStream(CompressionCodec.scala:122)

at org.apache.spark.serializer.SerializerManager.wrapForCompression(SerializerManager.scala:163)

at org.apache.spark.serializer.SerializerManager.wrapStream(SerializerManager.scala:124)

at org.apache.spark.shuffle.BlockStoreShuffleReader$$anonfun$2.apply(BlockStoreShuffleReader.scala:50)

at org.apache.spark.shuffle.BlockStoreShuffleReader$$anonfun$2.apply(BlockStoreShuffleReader.scala:50)

at org.apache.spark.storage.ShuffleBlockFetcherIterator.next(ShuffleBlockFetcherIterator.scala:417)

at org.apache.spark.storage.ShuffleBlockFetcherIterator.next(ShuffleBlockFetcherIterator.scala:61)

at scala.collection.Iterator$$anon$12.nextCur(Iterator.scala:434)

at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:440)

at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)

at org.apache.spark.util.CompletionIterator.hasNext(CompletionIterator.scala:32)

at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)

at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)

at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage4.sort_addToSorter$(Unknown Source)

at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage4.processNext(Unknown Source)

at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)

at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$10$$anon$1.hasNext(WholeStageCodegenExec.scala:614)

at org.apache.spark.sql.execution.RowIteratorFromScala.advanceNext(RowIterator.scala:83)

at org.apache.spark.sql.execution.joins.SortMergeJoinScanner.advancedBufferedToRowWithNullFreeJoinKey(SortMergeJoinExec.scala:810)

at org.apache.spark.sql.execution.joins.SortMergeJoinScanner.<init>(SortMergeJoinExec.scala:685)

at org.apache.spark.sql.execution.joins.SortMergeJoinExec$$anonfun$doExecute$1.apply(SortMergeJoinExec.scala:213)

at org.apache.spark.sql.execution.joins.SortMergeJoinExec$$anonfun$doExecute$1.apply(SortMergeJoinExec.scala:150)

at org.apache.spark.rdd.ZippedPartitionsRDD2.compute(ZippedPartitionsRDD.scala:89)


写回答

2回答

Michael_PK

2018-05-24

你spark是编译的不?应该是和LZ4的版本不匹配

0
2
慕运维7479159
是编译的
2018-05-25
共2条回复

Michael_PK

2018-05-25

额外问下,是我们上课的spark版本?和hadoop版本指定编译的?还是改过啥参数没。我查了下spark默认就内置lz的压缩的,还有你的环境是什么模式

0
5
慕运维7479159
回复
Michael_PK
好的,谢谢
2018-05-25
共5条回复

以慕课网日志分析为例 进入大数据Spark SQL的世界

快速转型大数据:Hadoop,Hive,SparkSQL步步为赢

1644 学习 · 1129 问题

查看课程