在第4章 4-11数据分组技术GroupBy 小节里 执行df_bj.mean() 报错

来源:4-11 数据分组技术GroupBy

慕先生9385916

2023-11-15

4-11-数据分组技术GroupBy

df = pd.read_csv(‘city_weather.csv’)
g = df.groupby(df[‘city’])
df_bj = g.get_group(‘BJ’)
df_bj.mean()

TypeError: Could not convert [‘03/01/201617/01/201631/01/201614/02/201628/02/201613/03/2016’
‘BJBJBJBJBJBJ’] to numeric

谢谢老师

写回答

1回答

麦兜搞IT

2024-01-17

试试这个呢

import pandas as pd


# 假设包含日期的列名为'date_column'


df = pd.read_csv('city_weather.csv')

g = df.groupby(df['city'])

df_bj = g.get_group('BJ')


# 拆分拼接的日期并转换为数值型数据


df_bj['date_column'] = df_bj['date_column'].apply(lambda x: [int(date) for date in x.split('/')])


0
1
慕设计1336241
上述代码执行后出现的错误 C:\Users\Thinkpad\AppData\Local\Temp\ipykernel_177996\296147031.py:1: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df_bj['date'] = df_bj['date'].apply(lambda x: [int(date) for date in x.split('/')])
2024-07-25
共1条回复

Python数据分析入门与实践,开启Data Science职业之旅

只要会python,就能轻松入门数据分析!

2216 学习 · 338 问题

查看课程