cuda多版本问题
来源:1-9 Google_cloud_gpu_tensorflow配置
UN_Helium
2019-07-17
老师,我在conda base里安装了tf1.x gpu版,现在我创建了一个tf2.0的conda env,在里面再照着你视频里演示的安装方法,会对我的tf1.x gpu环境产生影响吗?
写回答
3回答
-
UN_Helium
提问者
2019-07-18
>>> tf.test.is_gpu_available() 2019-07-18 11:24:27.219720: I tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA 2019-07-18 11:24:27.255866: I tensorflow/core/platform/profile_utils/cpu_utils.cc:94] CPU Frequency: 3399825000 Hz 2019-07-18 11:24:27.256476: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x555c9dd55e80 executing computations on platform Host. Devices: 2019-07-18 11:24:27.256512: I tensorflow/compiler/xla/service/service.cc:175] StreamExecutor device (0): <undefined>, <undefined> 2019-07-18 11:24:27.257622: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcuda.so.1 2019-07-18 11:24:27.262431: E tensorflow/stream_executor/cuda/cuda_driver.cc:318] failed call to cuInit: CUDA_ERROR_NO_DEVICE: no CUDA-capable device is detected 2019-07-18 11:24:27.262472: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:169] retrieving CUDA diagnostic information for host: pop-os 2019-07-18 11:24:27.262485: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:176] hostname: pop-os 2019-07-18 11:24:27.262543: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:200] libcuda reported version is: 430.34.0 2019-07-18 11:24:27.262574: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:204] kernel reported version is: 418.56.0 2019-07-18 11:24:27.262591: E tensorflow/stream_executor/cuda/cuda_diagnostics.cc:313] kernel version 418.56.0 does not match DSO version 430.34.0 -- cannot find working devices in this configuration
出现这样的信息,该怎么解决
00 -
UN_Helium
提问者
2019-07-18
这是Tensorflow GPU支持里的指导。
Ubuntu 18.04 (CUDA 10)
# Add NVIDIA package repositories wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/cuda-repo-ubuntu1804_10.0.130-1_amd64.deb sudo dpkg -i cuda-repo-ubuntu1804_10.0.130-1_amd64.deb sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/7fa2af80.pub sudo apt-get update wget http://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1804/x86_64/nvidia-machine-learning-repo-ubuntu1804_1.0.0-1_amd64.deb sudo apt install ./nvidia-machine-learning-repo-ubuntu1804_1.0.0-1_amd64.deb sudo apt-get update # Install NVIDIA driver sudo apt-get install --no-install-recommends nvidia-driver-410 # Reboot. Check that GPUs are visible using the command: nvidia-smi
上面的部分已经在1.x版本安装的时候安装在base环境里了。如果在(虚拟环境2)中继续下列命令,会对base环境有影响吗?
# Install development and runtime libraries (~4GB) sudo apt-get install --no-install-recommends \ cuda-10-0 \ libcudnn7=7.4.1.5-1+cuda10.0 \ libcudnn7-dev=7.4.1.5-1+cuda10.0 # Install TensorRT. Requires that libcudnn7 is installed above. sudo apt-get update && \ sudo apt-get install nvinfer-runtime-trt-repo-ubuntu1804-5.0.2-ga-cuda10.0 \ && sudo apt-get update \ && sudo apt-get install -y --no-install-recommends libnvinfer-dev=5.0.2-1+cuda10.0
012019-07-21 -
正十七
2019-07-18
同学你好,独立的python环境装装tf2.0不会影响,但GPU驱动可能会影响,可能会遇到找不到cuda**.so的错误。但估计没太大问题改一些环境变量就可以。如果遇到具体问题的话再发上来哈。
012019-11-29
相似问题