tf1中的dataset.make_initializable_iterator()与dataset.repeat(epochs)的冲突问题
来源:5-10 TF1_dataset使用
wxz123
2019-11-14
import numpy as np
import tensorflow as tf
from tensorflow import keras
fashion_mnist = keras.datasets.fashion_mnist
(x_train_all, y_train_all), (x_test, y_test) = fashion_mnist.load_data()
x_valid, x_train = x_train_all[:5000], x_train_all[5000:]
y_valid, y_train = y_train_all[:5000], y_train_all[5000:]
print(x_valid.shape, y_valid.shape)
print(x_train.shape, y_train.shape)
print(x_test.shape, y_test.shape)
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
x_train_scaled = scaler.fit_transform(
x_train.astype(np.float32).reshape(-1, 1)).reshape(-1, 28 * 28)
x_valid_scaled = scaler.transform(
x_valid.astype(np.float32).reshape(-1, 1)).reshape(-1, 28 * 28)
x_test_scaled = scaler.transform(
x_test.astype(np.float32).reshape(-1, 1)).reshape(-1, 28 * 28)
y_train = np.asarray(y_train, dtype = np.int64)
y_valid = np.asarray(y_valid, dtype = np.int64)
y_test = np.asarray(y_test, dtype = np.int64)
def make_dataset(images, labels, epochs, batch_size, shuffle = True):
dataset = tf.data.Dataset.from_tensor_slices((images, labels))
if shuffle:
dataset = dataset.shuffle(10000)
dataset = dataset.repeat(epochs).batch(batch_size)
return dataset
batch_size = 128
epochs = 10
images_placeholder = tf.placeholder(tf.float32, [None, 28 * 28])
labels_placeholder = tf.placeholder(tf.int64, (None,))
dataset = make_dataset(images_placeholder, labels_placeholder,
epochs = epochs,
batch_size = batch_size)
dataset_iter = dataset.make_initializable_iterator()
x, y = dataset_iter.get_next()
hidden_units = [100, 100]
class_num = 10
input_for_next_layer = x
for hidden_unit in hidden_units:
input_for_next_layer = tf.layers.dense(input_for_next_layer,
hidden_unit,
activation=tf.nn.relu)
logits = tf.layers.dense(input_for_next_layer,
class_num)
loss = tf.losses.sparse_softmax_cross_entropy(labels = y,
logits = logits)
prediction = tf.argmax(logits, 1)
correct_prediction = tf.equal(prediction, y)
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float64))
train_op = tf.train.AdamOptimizer(1e-3).minimize(loss)
init = tf.global_variables_initializer()
train_steps_per_epoch = x_train.shape[0] // batch_size
valid_steps = x_valid.shape[0] // batch_size
def eval_with_sess(sess, images_placeholder,labels_placeholder,x_valid_scaled,y_valid,accuracy, valid_steps):
sess.run(dataset_iter.initializer,
feed_dict = {
images_placeholder: x_valid_scaled,
labels_placeholder: y_valid,
})
eval_accuracies = []
for step in range(valid_steps):
accuracy_val = sess.run(accuracy)
eval_accuracies.append(accuracy_val)
return np.mean(eval_accuracies)
with tf.Session() as sess:
sess.run(init)
for epoch in range(epochs):
sess.run(dataset_iter.initializer,
feed_dict = {
images_placeholder: x_train_scaled,
labels_placeholder: y_train
})
for step in range(train_steps_per_epoch):
loss_val, accuracy_val, _ = sess.run(
[loss, accuracy, train_op])
print('\r[Train] epoch: %d, step: %d, loss: %3.5f, accuracy: %2.2f' % (
epoch, step, loss_val, accuracy_val), end="")
valid_accuracy = eval_with_sess(sess,
images_placeholder,labels_placeholder,
x_valid_scaled,y_valid,
accuracy,
valid_steps)
print("\t[Valid] acc: %2.2f" % (valid_accuracy))
老师能否帮我看一下这个代码,对于tensorflow1,用dataset的make_initializable_iterator()这个方法使dataset_iter可以在同时用在训练集和验证集上,但我每一个epoch用验证集的时候都要运行
sess.run(dataset_iter.initializer,
feed_dict = {
images_placeholder: x_valid_scaled,
labels_placeholder: y_valid,
})
这样一段代码来重新初始化dataset_iter,验证完再进行下一个epoch训练时又要运行
sess.run(dataset_iter.initializer,
feed_dict = {
images_placeholder: x_train_scaled,
labels_placeholder: y_train
})
这段代码再一次重新初始化dataset_iter。
我的问题是:既然每一个epoch的dataset_iter要在训练集和验证集之间来回切换时都要重新初始化dataset_iter,那
def make_dataset(images, labels, epochs, batch_size, shuffle = True):
dataset = tf.data.Dataset.from_tensor_slices((images, labels))
if shuffle:
dataset = dataset.shuffle(10000)
dataset = dataset.repeat(epochs).batch(batch_size)
return dataset
这段代码中的dataset = dataset.repeat(epochs).batch(batch_size)的.repeat(epochs)是不是没什么必要了?
写回答
1回答
-
正十七
2019-11-17
同学你好,如果你保证了每次验证的时候在验证集上不会超过一遍的话,那么这个repeat(epoches)就是不必要的。
032020-03-05
相似问题