额,老师,我想把正确率显示出来,结果报错

来源:2-5 多因子线性回归实战

Xmaxdev

2021-11-17

源码

#set up the linear regression model
from sklearn.linear_model import LinearRegression
LR1 = LinearRegression()
#train the model
LR1.fit(X,y)

#calculate the price vs size
y_predict_1 = LR1.predict(X)
print(y_predict_1)


#evaluate the model
from sklearn.metrics import mean_squared_error,r2_score,accuracy_score
mean_squared_error_1 = mean_squared_error(y,y_predict_1)
r2_score_1 = r2_score(y,y_predict_1)
accuracy_score_1 = accuracy_score(y,y_predict_1)

accuracy_score_1

---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
/var/folders/t0/ql_4wyl17tg2m1qmgf7k62fm0000gn/T/ipykernel_98298/1665350966.py in <module>
      3 mean_squared_error_1 = mean_squared_error(y,y_predict_1)
      4 r2_score_1 = r2_score(y,y_predict_1)
----> 5 accuracy_score_1 = accuracy_score(y,y_predict_1)
      6 # print(y,type(y_predict_1[0]))
      7 print(mean_squared_error_1,r2_score_1)

~/opt/miniconda3/lib/python3.8/site-packages/sklearn/metrics/_classification.py in accuracy_score(y_true, y_pred, normalize, sample_weight)
    203 
    204     # Compute accuracy for each possible representation
--> 205     y_type, y_true, y_pred = _check_targets(y_true, y_pred)
    206     check_consistent_length(y_true, y_pred, sample_weight)
    207     if y_type.startswith("multilabel"):

~/opt/miniconda3/lib/python3.8/site-packages/sklearn/metrics/_classification.py in _check_targets(y_true, y_pred)
    102     # No metrics support "multiclass-multioutput" format
    103     if y_type not in ["binary", "multiclass", "multilabel-indicator"]:
--> 104         raise ValueError("{0} is not supported".format(y_type))
    105 
    106     if y_type in ["binary", "multiclass"]:

ValueError: continuous is not supported

想看看正确分数,不知道这个问题怎么造成的,类型一样,shape一样,可能我犯了一个低级错误,但是检查不出来,请老师帮忙看一下,谢谢🙏

写回答

1回答

flare_zhao

2021-11-17

回归任务没有准确率,准确率是用来衡量分类任务的

0
2
flare_zhao
回复
Xmaxdev
加油哈
2021-11-17
共2条回复

Python3入门人工智能 掌握机器学习+深度学习

人工智能基础全方位讲解,构建完整人工智能知识体系,带你入门AI

1946 学习 · 594 问题

查看课程